Search results for "INSERTION SEQUENCES"

showing 5 items of 5 documents

Factors Behind Junk DNA in Bacteria

2012

Although bacterial genomes have been traditionally viewed as being very compact, with relatively low amounts of repetitive and non-coding DNA, this view has dramatically changed in recent years. The increase of available complete bacterial genomes has revealed that many species present abundant repetitive DNA (i.e., insertion sequences, prophages or paralogous genes) and that many of these sequences are not functional but can have evolutionary consequences as concerns the adaptation to specialized host-related ecological niches. Comparative genomics analyses with close relatives that live in non-specialized environments reveal the nature and fate of this bacterial junk DNA. In addition, the…

Comparative genomicsGeneticslcsh:QH426-470Pseudogenegenome degradationjunk DNApseudogenesBacterial genome sizeReviewBiologyintergenic regions (IGR)GenomeNoncoding DNAlcsh:GeneticsIntergenic regionjunk DNA; pseudogenes; intergenic regions (IGR); insertion sequences (IS); genome degradationGeneticsInsertion sequenceGeneinsertion sequences (IS)Genetics (clinical)Genes
researchProduct

Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent comm…

2007

A collection of 17 atrazine-degrading bacteria isolated from soils was studied to determine the composition of the atrazine-degrading genetic potential (i.e. trzN, trzD and atz) and the presence of IS1071. The characterization of seven new atrazine-degrading bacteria revealed for the first time the trzN-atzBC gene composition in Gram-negative bacteria such as Sinorhizobium sp. or Polaromonas sp. Three main atrazine-degrading gene combinations (i) trzN– atzBC, (ii) atzABC– trzD and (iii) atzABCDEF were observed. The atz and trz genes were often located on plasmids, suggesting that plasmid conjugation could play an important role in their dispersion. In addition, the observation of these gene…

DNA BacterialGene Transfer HorizontalATRAZINEMolecular Sequence DataBIODEGRADATIONatrazine; insertion sequences; biodegradation; atz genes; trz genesBiologyMicrobiologyMicrobiologyEvolution MolecularTransposition (music)03 medical and health scienceschemistry.chemical_compoundPlasmidGram-Negative BacteriaATZ GENESGeneticsInsertion sequenceMolecular BiologyGeneSoil MicrobiologySEQUENCE D'INSERTION030304 developmental biologyRecombination GeneticGenetics0303 health sciencesINSERTION SEQUENCES030306 microbiologyCatabolismChromosomeSequence Analysis DNATRZ GENESbiology.organism_classification[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryGenes BacterialDNA Transposable ElementsMetabolic Networks and PathwaysDNABacteriaPlasmids
researchProduct

Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae

2008

Bacteria that establish an obligate intracellular relationship with eukaryotic hosts undergo an evolutionary genomic reductive process. Recent studies have shown an increase in the number of mobile elements in the first stage of the adaptive process towards intracellular life, although these elements are absent in ancient endosymbionts. Here, the genome of SOPE, the obligate mutualistic endosymbiont of rice weevils, was used as a model to analyze the initial events that occur after symbiotic integration. During the first phases of the SOPE genome project, four different types of insertion sequence (IS) elements, belonging to well-characterized IS families from γ-proteobacteria, were identif…

Sitophilus oryzae (rice weevil)Insecta[SDV]Life Sciences [q-bio]MESH: Genome BacterialMESH: WeevilsEvolution MolecularOpen Reading FramesMESH: Insects:CIENCIAS DE LA VIDA::Microbiología [UNESCO]SOPE (Sitophilus oryzae primary endosymbiont) ; Sitophilus oryzae (rice weevil) ; Insertion sequences (IS) ; EndosymbiosisAnimalsMESH: AnimalsSymbiosisUNESCO::CIENCIAS DE LA VIDA::MicrobiologíaMESH: Evolution MolecularMESH: SymbiosisEndosymbiosisSOPE (Sitophilus oryzae primary endosymbiont)Oryza[SDV.EE.IEO] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: Open Reading FramesMESH: Oryza sativaInsertion sequences (IS)Mutagenesis InsertionalMESH: GammaproteobacteriaMESH: Mutagenesis Insertional1-1-1 Article périodique à comité de lectureWeevilsGammaproteobacteriaGenome Bacterial[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Development of an Efficient In Vivo System (P-junc-TpaseIS(1223)) for Random Transposon Mutagenesis of Lactobacillus casei

2012

ABSTRACT The random transposon mutagenesis system P junc -TpaseIS 1223 is composed of plasmids pVI129, expressing IS 1223 transposase, and pVI110, a suicide transposon plasmid carrying the P junc sequence, the substrate of the IS 1223 transposase. This system is particularly efficient in Lactobacillus casei , as more than 10,000 stable, random mutants were routinely obtained via electroporation.

Transposable element[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesTn3 transposonLactobacillus casei[SDV]Life Sciences [q-bio]TransposasesVECTORGenetics and Molecular BiologyDELBRUECKII SUBSP BULGARICUSApplied Microbiology and BiotechnologyBACILLUS-SUBTILIS03 medical and health sciencesPlasmidEscherichia coliSTREPTOCOCCUS[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesTransposaseDNA Primers030304 developmental biologyGenetics0303 health sciencesEcologybiologyRandom030306 microbiologyINSERTION SEQUENCESElectroporationbiology.organism_classificationSleeping Beauty transposon systemMolecular biologyGENETRANSFORMATIONGROUP-BBlotting SouthernLacticaseibacillus caseiLactobacillusMutagenesisDNA Transposable ElementsbacteriaTransposon mutagenesisELECTROPORATIONPLASMIDPlasmidsFood ScienceBiotechnology
researchProduct

Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae

2008

Bacteria that establish an obligate intracellular relationship with eukaryotic hosts undergo an evolutionary genomic reductive process. Recent studies have shown an increase in the number of mobile elements in the first stage of the adaptive process towards intracellular life, although these elements are absent in ancient endosymbionts. Here, the genome of SOPE, the obligate mutualistic endosymbiont of rice weevils, was used as a model to analyze the initial events that occur after symbiotic integration. During the first phases of the SOPE genome project, four different types of insertion sequence (IS) elements, belonging to well-characterized IS families from alpha-proteobacteria, were ide…

charanconUNESCO::CIENCIAS DE LA VIDA::Microbiología ::BacteriologíasymbiosemutagenèseSOPE (Sitophilus oryzae primary endosymbiont); Sitophilus oryzae (rice weevil); Insertion sequences (IS); Endosymbiosisséquence d'insertionmutagénèse insertionnelle
researchProduct